Contenidos

Espectrometría infrarroja


La espectrometría de infrarrojos (espectroscopia IV) es un tipo de espectrometría de absorción que utiliza la región infrarroja del espectro electromagnético. Como las demás técnicas espectroscópicas, puede ser utilizada para identificar un compuesto o investigar la composición de una muestra.

La espectrometría infrarroja se basa en el hecho de que los enlaces químicos de las sustancias tienen frecuencias de vibración específicas, que corresponden a los niveles de energía de la molécula. Estas frecuencias dependen de la forma de la superficie de energía potencial de la molécula, la geometría molecular, las masas atómicas y, posiblemente, el acoplamiento vibracional.

Si la molécula recibe luz con la misma energía de esa vibración, entonces la luz será absorbida si se dan ciertas condiciones. Para que una vibración aparezca en el espectro infrarrojo, la molécula debe someterse a un cambio en su momento dipolar durante la vibración. En particular, una aproximación de Born-Oppenheimer y aproximaciones armónicas; es decir, cuando el hamiltoniano molecular correspondiente al estado electrónico estándar puede ser aproximado por un oscilador armónico cuántico en las cercanías de la geometría molecular de equilibrio, las frecuencias vibracionales de resonancia son determinadas por los modos normales correspondientes a la superficie de energía potencial del estado electrónico estándar. No obstante, las frecuencias de resonancia pueden estar, en una primera aproximación, en relación con la longitud del enlace y las masas de los átomos en cada extremo del mismo. Los enlaces pueden vibrar de seis maneras: estiramiento simétrico, estiramiento asimétrico, tijeras, rotación, giro y wag.

Con el fin de hacer medidas en una muestra, se transmite un rayo monocromo de luz infrarroja a través de la muestra, y se registra la cantidad de energía absorbida. Repitiendo esta operación en un rango de longitudes de onda de interés (por lo general, 4000-400 cm-1) se puede construir un gráfico. Al examinar el gráfico de una sustancia, un usuario experimentado puede obtener información sobre la misma.

Esta técnica funciona casi exclusivamente en enlaces covalentes, y se usa mucho en química, en especial en química orgánica. Se pueden generar gráficos bien resueltos con muestras de una sola sustancia de gran pureza. Sin embargo, la técnica se utiliza habitualmente para la identificación de mezclas complejas.

PREPARACIÓN DE LA MUESTRA


Las muestras líquidas pueden ser prensadas entre dos planchas de una sal de alta pureza (como el cloruro de sodio). Estas placas deben ser transparentes a la luz infrarroja para no introducir ninguna línea en el espectro de la muestra. Las placas obviamente son solubles en agua, por lo que la muestra, los reactivos de lavado y el medio deben ser anhidros (es decir, sin agua).

Las muestras sólidas se preparan mezclando una cierta cantidad de muestra con una sal altamente purificada (por lo general bromuro de potasio). Esta mezcla se tritura y se prensa con el fin de formar una pastilla por la que pueda pasar la luz. La pastilla necesita ser prensada a altas presiones para asegurar que sea translúcida, pero esto no puede lograrse sin un equipo adecuado (por ejemplo, una prensa hidráulica). Al igual que el cloruro de sodio, el bromuro de potasio no absorbe la radiación infrarroja, por lo que las únicas líneas espectrales provendrán del analito.



MÉTODO TÍPICO


Un haz de luz infrarroja es generado y dividido en dos rayos. Uno pasa por la muestra, y el otro por una referencia que suele ser la sustancia en la que está disuelta o mezclada la muestra. Ambos haces se reflejan de vuelta al detector, pero primero pasan a través del separador, que alterna rápidamente cuál de los dos rayos entra en el detector. Las dos señales se comparan y, a continuación, se registran los datos.

Hay dos razones por las que se utiliza una referencia:

* Evita que las fluctuaciones de energía eléctrica de la fuente afecten a los resultados finales, ya que tanto la muestra como la referencia se ven afectadas del mismo modo. Por esa misma razón, también impide la influencia de variaciones sobre el resultado final, debido al hecho de que la fuente no necesariamente emite la misma intensidad de luz para todas las longitudes de onda
* Permite que los efectos del disolvente se anulen, porque la referencia es normalmente la forma pura del disolvente en el que se encuentra.

USOS Y APLICACIONES


La espectrometría infrarroja se utiliza ampliamente tanto en la industria como en la investigación científica, porque es una técnica rápida y fiable para medidas, control de calidad y análisis dinámicos. Los instrumentos actuales son pequeños y pueden ser transportados, incluso para tomar medidas de campo. Con los avances en tecnología de filtrado computacional y la manipulación de los resultados, se pueden medir con precisión las muestras en una solución (el agua produce una banda larga de absorbancia en el rango de interés, lo que daría un espectro ilegible sin dicho tratamiento computacional). Algunas máquinas incluso dicen automáticamente qué sustancia está siendo analizada a través de miles de espectros de referencia almacenados en la memoria.

Haciendo medidas a una frecuencia específica a través del tiempo, se pueden seguir los cambios en la naturaleza o la cantidad de un enlace en particular, lo que es especialmente útil para medir el grado de polimerización en la fabricación de polímeros. Las máquinas modernas pueden medir en el rango de interés con gran frecuencia, como 32 veces por segundo. Esto se puede hacer mientras se toman medidas simultáneas con otras técnicas. Así las observaciones de reacciones químicas son procesadas con mayor rapidez, y de forma más precisa y exacta.

ESPECTROMETRÍA DE INFRARROJOS POR TRANSFORMADA DE FOURIER




La espectrometría infrarroja por transformada de Fourier (FTIV) es una técnica de análisis para obtener el espectro infrarrojo con mayor rapidez. En lugar de registrar los datos variando la frecuencia de luz infrarroja monocromática, se guía la luz IV (con todas las longitudes de onda de pista utilizada) a través de un interferómetro. Después de pasar por la muestra, la señal medida da el interferograma. La realización de una transformada de Fourier de la señal produce un espectro idéntico al de la espectrometría infrarroja convencional (dispersiva).

Los espectrofotómetros FTIV son más baratos que los convencionales, porque es más simple construir un interferómetro que un monocromador. Además, la medida de un solo espectro es mucho más rápida en esta técnica, debido a que la información de todas las frecuencias se toman al mismo tiempo. Esto permite hacer múltiples lecturas de una sola muestra y obtener un promedio, lo que aumenta la sensibilidad del análisis. Debido a sus múltiples ventajas, casi todos los modernos espectrofotómetros de infrarrojos son FTIV.