Contenidos
- ESPECTROMETRIA .COM
- Espectro electromagnético
- Tipos de espectrometría
- Espectrómetros
- Métodos espectrométricos
- Espectrometría de absorción
- Espectrometría de fluorescencia
- Espectrometría de absorción atómica
- Espectrometría ultravioleta-visible
- Espectrometría infrarroja
- Espectrometría de emisión
- Espectrometría de rayos X
- Espectrometría Raman
- Espectrometría de resonancia magnética nuclear
- Espectrometría Mossbauer
Espectrometría de absorción atómica
En química analítica, la espectrometría de absorción atómica es una técnica para determinar la concentración de un elemento metálico determinado en una muestra. Puede utilizarse para analizar la concentración de más de 62 metales diferentes en una solución.
Aunque la espectrometría de absorción atómica data del siglo XIX, la forma moderna fue desarrollada en gran medida durante la década de los 50 por un equipo de químicos de Australia, dirigidos por Alan Walsh.
PRINCIPIOS EN LOS QUE SE BASA
La técnica hace uso de la espectrometría de absorción para evaluar la concentración de un analito en una muestra. Se basa en gran medida en la ley de Beer-Lambert. En resumen, los electrones de los átomos en el atomizador pueden ser promovidos a orbitales más altos por un instante mediante la absorción de una cantidad de energía (es decir, luz de una determinada longitud de onda). Esta cantidad de energía (o longitud de onda) se refiere específicamente a una transición de electrones en un elemento particular, y en general, cada longitud de onda corresponde a un solo elemento.
Como la cantidad de energía que se pone en la llama es conocida, y la cantidad restante en el otro lado (el detector) se puede medir, es posible, a partir de la ley de Beer-Lambert, calcular cuántas de estas transiciones tienen lugar, y así obtener una señal que es proporcional a la concentración del elemento que se mide.
INSTRUMENTOS
Para analizar los constituyentes atómicos de una muestra es necesario atomizarla. La muestra debe ser iluminada por la luz. Finalmente, la luz es transmitida y medida por un detector. Con el fin de reducir el efecto de emisión del atomizador (por ejemplo, la radiación de cuerpo negro) o del ambiente, normalmente se usa un espectrómetro entre el atomizador y el detector.
Tipos de atomizadores
Para atomizar la muestra normalmente se usa una llama, pero también pueden usarse otros atomizadores como el horno de grafito o los plasmas, principalmente los plasmas de acoplamiento inductivo.
Cuando se usa una llama, se dispone de tal modo que pase a lo largo lateralmente (10 cm) y no en profundidad. La altura de la llama sobre la cabeza del quemador se puede controlar mediante un ajuste del flujo de mezcla de combustible. Un haz de luz pasa a través de esta llama en el lado más largo del eje (el eje lateral) e impacta en un detector.
Análisis de los líquidos
Una muestra de líquido normalmente se convierte en gas atómico en tres pasos:
1. Desolvación. El líquido disolvente se evapora, y la muestra permanece seca.
2. Vaporización. La muestra sólida se evapora a gas.
3. Atomización. Los compuestos que componen la muestra se dividen en átomos libres.
Fuentes de luz
La fuente de luz elegida tiene una anchura espectral más estrecha que la de las transiciones atómicas.
* Lámparas de cátodo hueco. En su modo de funcionamiento convencional, la luz es producida por una lámpara de cátodo hueco. En el interior de la lámpara hay un cátodo cilíndrico de metal que contiene el metal de excitación, y un ánodo. Cuando un alto voltaje se aplica a través del ánodo y el cátodo, los átomos de metal en el cátodo se excitan y producen luz con una determinada longitud de onda. El tipo de tubo catódico hueco depende del metal que se analiza. Para analizar la concentración de cobre en un mineral, se utiliza un tubo catódico de cobre, y así para cualquier otro metal que se analice.
* Lásers de diodo. La espectrometría de absorción atómica también puede ser llevada a cabo mediante láser, principalmente un láser de diodo, ya que sus propiedades son apropiadas para la espectrometría de absorción láser. La técnica se denomina espectrometría de absorción atómica por láser de diodo (DLAAS o DLAS), o bien, espectrometría de absorción por modulación de longitud de onda.
MÉTODOS DE CORRECCIÓN DE FONDO
El estrecho ancho de banda de las lámparas catódicas huecas hace que sea raro el solapamiento espectral. Es decir, es poco probable que una línea de absorción de un elemento se solape con otra. La emisión molecular es mucho más amplia, por lo que es más probable que algunas bandas de absorción molecular se superpongan con una línea atómica. Esto puede resultar en una absorción artificialmente alta y un cálculo exagerado de la concentración en la solución. Se utilizan tres métodos para corregir esto:
* Corrección de Zeeman. Se usa un campo magnético para dividir la línea atómica en dos bandas laterales. Estas bandas laterales están lo suficientemente cerca de la longitud de onda original como para solaparse con las bandas moleculares, pero están lo suficientemente lejos como para no coincidir con las bandas atómicas. Se puede comparar la absorción en presencia y ausencia de un campo magnético, siendo la diferencia la absorción atómica de interés.
* Corrección de Smith-Hieftje (inventada por Stanley B. Smith y Gary M. Hieftje) - La lámpara catódica hueca genera pulsos de alta corriente, provocando una mayor población de átomos y auto-absorción durante los pulsos. Esta auto-absorción provoca una ampliación de la línea y una reducción de la intensidad de la línea a la longitud de onda original.
* Lámpara de corrección de deuterio. En este caso, se usa una fuente de amplia emisión (una lámpara de deuterio), para medir la emisión de fondo. El uso de una lámpara separada hace de este método el menos exacto, pero su relativa simplicidad (y el hecho de que es el más antiguo de los tres) lo convierte en el más utilizado.